CONCLUSION: We observed differences in T2 and T3 between preparations with or without LH-like activity. Gonadotropin used for stimulation might have an impact downstream on embryo development and implantation potential.

P-505 Wednesday, October 19, 2011
MILD VS CONVENTIONAL OVARIAN STIMULATION IN INTRAUTERINE INSEMINATION. A PROSPECTIVE RANDOMIZED STUDY. E. Munoz, A. Carballo, I. Fernandez, D. Pabon, S. Portela, A. Pellicer; Reproductive Medicine, I.VI Vigo, Vigo, Pontevedra, Spain; Reproductive Medicine, Instituto Valenciano de Infertilidad, Valencia University, Valencia, Spain.

OBJECTIVE: Our aim was evaluate a mild ovarian stimulation protocol starting the gonadotropin administration after natural follicular recruitment and compared with conventional ovarian stimulation as ovulation induction to intrauterine insemination.

DESIGN: A prospective randomized study of two different protocols of ovarian stimulation.

MATERIALS AND METHODS: Patients with less than three attempts of IUI, younger than 41 years old, with body mass index lower than 35 Kg/m2 and regular menstrual cycles were randomized to start 75 IU per day of IUI, younger than 41 years old, with body mass index lower than 35 Kg/m2 to intrauterine insemination.

CONCLUSION: Mild stimulation protocol needs fewer amounts of gonadotropins, fewer days of ovarian stimulation and it reaches similar pregnancy rate than conventional ovarian stimulation in intrauterine insemination.

P-506 Wednesday, October 19, 2011
FOLLICLE STIMULATING HORMONE RECEPTOR (FSHR) GENE POLYMORPHISM IN INFERTILE WOMEN (POOR RESPONDERS VS GOOD RESPONDERS) UNDERGOING OVARIAN STIMULATION COMPARED TO FERTILE WOMEN. B. Sever, A. Karakok, T. Toptas, M. Simsek, O. Taskin, O. Alper. Akdeniz University, Antalya, Turkey.

OBJECTIVE: Besides point mutations, when FSHR gene polymorphisms are formed (especially codon 307 and 680) changes in response to exogenous FSH hormone are observed. In this trial we investigated the association between FSHR gene polymorphism and the outcomes of ovarian stimulation in both fertile and bad responder patients with infertility compared to fertile population.

DESIGN: Prospective controlled trial in a university based infertility clinic

MATERIALS AND METHODS: One hundred and eighty-two patients under 40 yrs of age who underwent ICSI procedures were included in the study. Patients with PCO or previous history of ovarian surgery were excluded. Forty poor responders and 42 normal responders were included. Fertile patients who had delivered recently (n=100) were included as controls. FSHR gene polymorphism Ala307 thr and Ser680 Asn were evaluated by PCR.

RESULTS: The demographic characteristics among the study population were similar. In control patients Ala307 thr polymorphism found to be homozygot (28%), heterozygoty (51%) and normal (21%). When compared to infertile patients, poor responders had 30% homozygot, 50% heterozygot and 20% normal genotype respectively. Of normal responders, distribution were 11.9% homozygot, 42.9% heterozygot and 45.2% normal genotype respectively. Ser680 Asn distribution was similar to ALA307 thr in all 3 patient groups. In poor responders SER680 Asn polymorphism (heterozygot) was significantly higher. In the latter group the gonadotrophine dose used was significantly high.

CONCLUSION: FSHR polymorphism at position 680 may be associated with reduced ovarian response and much higher use of gonadotrophine dose. However further prospective randomized studies are needed to elucidate the mechanism underlying FSHR polymorphism.

P-508 Wednesday, October 19, 2011
GONADOTROPHIN-RELEASING HORMONE AGONIST AND ANTAGONIST: FACTORS DRIVING THE PREGNANCY OUTCOMES – AN EXPLORATORY ANALYSIS. H. G. Al-Inany, A. M. Abou-Setta. Obstetrics and Gynecology, Cairo University, El-Manial, Cairo, Egypt; Alberta Research Centre for Health Evidence, University of Alberta, Edmonton, AB, Canada.

OBJECTIVE: A recent Cochrane review has demonstrated that gonadotrophin-releasing hormone agonists and antagonists have similar pregnancy outcomes, but a better safety profile for GnRH antagonists. Even so, little is known on how factors such as type of GnRH antagonist and flexibility in administration affects the pregnancy outcomes.

MATERIALS AND METHODS: Using data from recent Cochrane review (Al-Inany et al., 2011), RCTs comparing antagonist versus agonist were grouped according to the type of GnRH used (e.g. Cetrorelix or Ganirelix) and flexibility of the protocol (e.g. fixed or flexible protocol). Indirect comparisons were performed using the Bucher method and adjusted point estimates and confidence intervals were evaluated. The primary outcome was the live-birth rate. The secondary outcomes were the ongoing pregnancy and clinical pregnancy rates.

RESULTS: Data from forty-five RCTs (n = 7511) comparing antagonist to the long agonist protocols were extracted. There was no statistically significant difference between trials using Cetrorelix-only or Ganirelix-only, nor using the flexible or fixed protocol, compared with GnRH agonists for any of the clinical outcomes. Using indirect analysis, there was no statistically